Comparison of D-S vs VP formulas in experiments (Longitudinal friction force)

Y-N. Rao et al.: CELSIUS, Sweden'2001:

Longitudinal: D-S overestimates cooling force by factor of 10. VP agrees reasonably well.

Comparison of D-S vs VP in experiments (Transverse cooling force)

measurements and calculations	

Ion	Energy	Hori.	E beam	e ⁻¹ cooling time [sec]							
	[MeV/u]	emit. [πμm]	Current [mA]	Measure- ments	VVP's formula ^b	"Stan form	dard" ula ^c	Meshkov's formula ^d			
P	400	0.9	100	7.7	13.7	8.8	22.4	2.4	3.3		
		0.9	250	3.6	6.1	3.5	8.9	0.9	1.4		
		2.0	390	3.1	11.9	6.0	11.2	2.0	1.6		
		1.5	350	6.8	8.9	4.3	9.6	1.4	1.9		
		1.5	600	4.4	5.5	2.5	5.6	0.8	1.2		
		1.5	830	3.8	4.2	1.8	4.0	0.6	0.9		
d^{1+}	181	1.0	50	8.0	9.6	18.9	31.1	1.6	2.3		
		1.0	100	4.5	5.9	9.4	16.2	0.9	1.3		
¹⁴ N ⁷⁺	300	0.134	100	2.8	0.23	2.0	2.3	0.019	- c		

Transverse: D-S overestimates cooling time by a factor 2-3. VP underestimates it by about factor of 2.

NAP-M and MOSOL measurements Novosibirsk 70's and 80's

Schematic of friction force

Some study topics

- INITIAL study topics:
- 1. Find most realistic Cooling force formula for RHIC parameters. Vorpal results seems to help if necessary, friction coefficients will be taken from Vorpal directly, as pre-calculated Table
- 2. Need various experiments to test parameters relevant for e-cooling at RHIC high transverse and longitudinal velocities of electrons, Z dependence for our velocity range, energy dependence, dependence on magnetic field strength and errors, etc.
- 3. Find and take most relevant representation of IBS.
- 4. Study detailed IBS vs rms rates in combination with cooling, experimentally.
- 5. Study various cooler parameters: strength and errors of magnetic field, etc.

ESR data - 1997

Power of Z -ESR-1997

ESR-1997 – dependence on energy

beam energy. An average angle θ between the ion trajectory and the electron beam axis will lead to a transverse velocity in the comoving frame of $u_{\perp}^{ad} = \gamma \beta c \theta$. This will reduce the efficiency of magnetic cooling for higher beam energies for a given θ .

CRYRING – dependence on V_e_transverse – example of non-magnetic case (very low field in cooling solenoid)

